摘要
锂金属负极具有最高的理论比容量和最低的电极电势,被广泛认为是下一代高比能可充电电池负极理想的选择。然而,不均匀的锂沉积/溶解行为伴随不可控的枝晶生长和快速的非活性锂形成限制了它的实际应用。本研究以红磷和锂为原料,通过重复的机械辊压成功制备了Li3P/Li(LPL)复合箔。Li3P良好的离子导电率和亲锂性有效地改善了金属锂的沉积/溶解行为。因此,LPL复合负极与硫化聚丙烯腈正极组装的全电池在200 mA g−1电流密度下循环100次后容量保持率为92.5%,明显高于纯锂负极(83%)。
关键词: 锂金属负极;机械辊压;磷化锂/锂;硫化聚丙烯腈
Abstract
Lithium (Li) metal anode has highest theoretical specific capacity and the lowest potential electrode, it has been widely considered as ideal anode choice for the next generation high-specific energy rechargeable batteries. However, uneven Li plating/stripping behaviors accompanied by uncontrolled dendrite growth and rapid inactive Li formation limit its practical application. In this study, Li3P/Li (LPL) composite foil was prepared by repeated mechanical rolling using red P and Li foil as raw materials. The good ionic conductivity and lipophilicity of Li3P effectively improve the plating/stripping behaviors of metallic Li. As a result, a full cell assembled with LPL anode and sulfurized polyacrylonitrile cathode exhibited a capacity retention rate of 92.5% after 100 cycles at current density of 200 mA g−1, which is significantly higher than that of pure Li anode (83%).
Key words: Lithium metal anode; Mechanical rolling; Li3P/Li; Sulfurized polyacrylonitrile
参考文献 References
[1] Murdoc B E, Toghil K E, Tapia R. A perspective on the sustainability of cathode materials used in lithium‐ion batteries [J]. Advanced Energy Materials, 2021, 11: 2102028.
[2] Zhao X, Wang C, Li Z, et al. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects [J]. Journal of Materials Chemistry A, 2021, 9(35): 19282-97.
[3] Li H, Yang H, Ai X. Routes to electrochemically stable sulfur cathodes for practical Li–S batteries [J]. Advanced Materials, 2023, 2305038.
[4] Huang C-J, Cheng J-H, Su W-N, et al. Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries [J]. Journal of Power Sources, 2021, 492: 229508.
[5] Zhang Y, Zuo T-T, Poopovic J, et al. Towards better Li metal anodes: Challenges and strategies [J]. Materials Today, 2020, 33: 56-74.
[6] Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries [J]. Advanced Science, 2021, 8(17): 2101111.
[7] Wang Y, Tan J, Li Z, et al. Recent progress on enhancing the lithiophilicity of hosts for dendrite-free lithium metal batteries [J]. Energy Storage Materials, 2022, 53: 156-82.
[8] Fu L, Wang X, Wang L, et al. A salt‐in‐metal anode: Stabilizing the solid electrolyte interphase to enable prolonged battery cycling [J]. Advanced Functional Materials, 2021, 31(19): 2010602.
[9] Lin L, Liang F, Zhang K, et al. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode [J]. Journal of Materials Chemistry A, 2018, 6(32): 15859-67.
[10] Liu G, Li Y, Zhang L, et al. In situ construction of high lithiophilic lithium phosphide protective layer for stable lithium metal anode [J]. Electrochimica Acta, 2023, 471: 143413.