摘要
金属−有机框架(MOFs)具有结构多样化、高度的孔隙率和规整的孔道尺寸等独特优点,被广泛应用在异相催化、荧光、气体吸附和电化学储存与转化等领域。MOFs的特殊刚性结构以及其金属中心的配位能力,使其具有作为荧光探针和催化剂的能力。本文结合作者实验室团队近年来的研究工作,介绍了MOFs材料由于孔道的选择性吸附、选择性通过能力而使其具有荧光特性和较高的催化性。并且从多方面探究了配体、反应物比例、反应温度对发光特性的影响,以及MOFs金属组分、结构构筑方式对催化效率的影响。同时介绍MOFs在作为荧光探针和异相催化剂方面的特点和潜力,最后展望了MOFs在这两方面的应用和发展前景。
关键词: 金属−有机框架;荧光探针;异相催化
Abstract
Metal-organic frameworks (MOFs) have been widely used in heterogeneous catalysis, fluorescence, gas adsorption and electrochemical storage and conversion due to their unique advantages such as structural diversity, high porosity and regular pore size. The special rigid structure of MOFs and the coordination ability of their metal centers give them the ability to act as fluorescent probes and catalysts. Based on the recent research work of the author's laboratory team, this paper introduces the fluorescence characteristics and high catalytic activity of MOFs materials due to the selective adsorption and selective passage ability of pores. The effects of ligand, reactant ratio and reaction temperature on luminescence characteristics, and the effects of metal composition and structure of MOFs on catalytic efficiency were investigated. At the same time, the characteristics and potential of MOFs as fluorescence probe and heterogeneous catalyst are introduced. Finally, the application and development prospect of MOFs in these two aspects are prospected.
Key words: Metal-organic frame; Fluorescent probe; Heterocatalysis
参考文献 References
[1] 陈跃颖,盘盈滢,杜文卿,等. 金属-有机框架在锂离子电池电极材料中的应用[J]. 材料研究与应用, 2022, 16(1): 68-80.
[2] Cheng Y, Wu M, Du Z, et al. Tetra-Nuclear cluster-based lanthanide metal−organic frameworks as white phosphor, information encryption, self-calibrating thermometers, and Fe2+ Sensors[J], ACS Applied Materials & Interfaces, 2023, 15; 24570–24582.
[3] Hu L, Hong X J, Lin X M, et al. A versatile anionic Cd(II)–based metal–organic framework for CO2 capture and nitroaromatic explosives detection[J]. Crystal Growth & Design, 2018, 18: 7088–7093.
[4] Lin X M, Fang H C, Zhou Z Y, et al. Temperature– and solvent–controlled dimensionality in a zinc 6–(1H–benzoimidazol–2–yl) pyridinecarboxylate system[J]. Cryst Eng Comm, 2009, 11(5): 847–854.
[5] 林晓明,霍永康,罗浩伟,等. 具有多相催化性能的金属有机框架的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 2015, 47(6) : 17–23 .
[6] Lin X M, Niu J L, Wen P X, et al. From 1D to 3D lanthanide coordination polymers constructed with pyridine–3,5–dicarboxylic acid: synthesis, crystal structures, and catalytic properties[J]. RSC Advances, 2016, 6: 163425.
[7] Lin X M, Niu J L, Wen P X, et al. A polyhedral metal–organic framework based on supramolecular building blocks: catalysis and luminescent sensing of solvent molecules[J]. Crystal Growth & Design, 2016, 16: 4705–4710.
[8] Lin X M, Li T T, Chen L F, et al. Two ligand–functionalized Pb(II) metal–organic frameworks: structures and catalytic performances[J]. Dalton Transactions, 2012, 41(34): 10422–10429.