期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Chemistry and Chemical Research. 2024; 4: (1) ; 12-22 ; DOI: 10.12208/j.jccr.20240002.

Study on fluorescence detection of fluazinam and picric acid based on imidazole-functional Ba(II)-MOF
基于咪唑功能化Ba(II)-MOF材料荧光检测氟啶胺和苦味酸的研究

作者: 毛欣怡 *, 李盼盼, 陈俏霞, 吕依诺, 刘昕语, 辛雪莲

河北大学公共卫生学院 河北省公共卫生安全重点实验室 河北保定

*通讯作者: 毛欣怡,单位:河北大学公共卫生学院 河北省公共卫生安全重点实验室 河北保定;

发布时间: 2024-06-20 总浏览量: 98

摘要

氟啶胺(Fluazinam, FLU)和苦味酸(picric acid, PA)是两种典型的有机化合物,具有高毒性和生物蓄积性,会造成环境污染,影响人体健康。本文基于课题组前期研究参照文献制备了咪唑功能化材料HBU-167(Ba(II)-MOF),并将其应用于荧光检测氟啶胺和苦味酸。在氟啶胺检测方面,其检出限(Limit of Detection, LOD)为7.5 μM,当氟啶胺的浓度增加到909 μM时,荧光猝灭率达到95.65%,通过Stern-Volmer方程计算得到猝灭常数为22.00 M−1;通过紫外-可见光谱法等检测手段,推测其检测机理为动态荧光猝灭,HBU-167与氟啶胺之间存在竞争吸收。在苦味酸检测方面,其LOD为0.46 μM,当苦味酸的浓度增加到56.604 μM时,通过Stern-Volmer方程计算得到猝灭常数为4.2 × 104 M−1;通过荧光寿命及荧光量子产率、吸附能和紫外-可见光谱等检测手段,推测其检测机理为静态荧光猝灭。

关键词: 金属有机框架;氟啶胺;荧光测定实验;苦味酸;快速检测

Abstract

Fluazinam (FLU) and picric acid (PA) are two typical organic compounds with high toxicity and bioaccumulation, which will cause environmental pollution and affect human health. In this paper, imidazole functional material HBU-167 (Ba(II)-MOF) was prepared based on the previous research references of our research group, and it was applied to the fluorescence detection of fluridine and picric acid. For the Detection of fluridine, the Limit of Detection (LOD) was 7.5 μM. When the concentration of fluridine increased to 909 μM, the fluorescence quenching rate reached 95.65%, and the quenching constant was 22.00 M−1 calculated by Stern-Volmer equation. Through UV-VIS spectroscopy and other detection methods, it is speculated that the detection mechanism is dynamic fluorescence quenching, and there is competitive absorption between HBU-167 and fluridine. In the detection of picric acid, the LOD is 0.46 μM, and when the concentration of picric acid increases to 56.604 μM, the quenching constant calculated by Stern-Volmer equation is 4.2 × 104 M−1. By means of fluorescence lifetime, fluorescence quantum yield, adsorption energy and UV-VIS spectrum, the detection mechanism is inferred to be static fluorescence quenching.

Key words: Metal-organic framework; Fluridine; Fluorescence assay experiment; Picric acid; Rapid detection

参考文献 References

[1] Adesina Adegoke K., Samuel Agboola O., Ogunmodede J., et al. Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater[J]. Materials Chemistry and Physics, 2020, 253: 123246.

[2] Tchinsa A., Hossain M. F., Wang T., et al. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review[J]. Chemosphere, 2021, 284: 131393.

[3] Tang X., Tang R., Xiong S., et al. Application of natural minerals in photocatalytic degradation of organic pollutants: A review[J]. Science of The Total Environment, 2022, 812: 152434.

[4] 李如美,王英华,李瑞娟,等.氟啶胺在马铃薯和土壤中的残留及安全使用评价[J].现代农药,2022,21(01):57-60.

[5] 骆爱兰,余向阳.氟啶胺胁迫对土壤过氧化氢酶活性的影响[J].江苏农业科学学,2011,39(06),478-480.

[6] 陈莲芬,陈梦涵,康健.金属-有机框架材料在有机磷农药检测和吸附中的应用进展[J].肇庆学院学报,2023,44(05), 20-28.

[7] Li Nan, Xia Yining, Li Yun, et al. Untargeted screening, quantitative analysis, and toxicity estimation of degradation products of fluazinam in vegetables[J]. Microchemical Journal,2023,190:108584.

[8] Chen Lei, Shangguan Liangmin, Wu Yongning, et al. Study on the residue and degradation of fluorine-containing pesticides in Oolong tea by using gas chromatography-mass spectrometry[J]. Food Control,2012,25(2):433-440.

[9] 陈丽惠,张斌,贾沁一,等.分散固相萃取-液相色谱-串联质谱法测定茶叶中12种农药的含量[J].理化检验-化学分册,2023,59(10),1196-1201

[10] Kumar S. M., Iyer S. K. An AIE active imidazole conjugated α-cyanostilbene based sensor for the selective and sensitive detection of picric acid in an aqueous medium[J]. Sensors and Actuators Reports, 2023, 6: 100177.

[11] Feng Y., Liu J., Lv M., et al. Unraveling the significant role of inter-HBs blocking the dark state in the “OFF/ON” sensing mechanism of fluorescent probe detecting picric acid[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 445: 115035.

[12] P K., Cherian A. R., Sirimahachai U., et al. Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107209.

[13] Gowri A., Vignesh R., Kathiravan A. Anthracene based AIEgen for picric acid detection in real water samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117144.

[14] 刘喜珍. 超高效液相色谱-串联质谱法快速测定水中农药和苦味酸[J]. 广州化工, 2022, 50(11): 97-99.

[15] 杨静. 高效液相色谱-串联三重四级杆质谱法测定土壤中苦味酸和联苯胺[J]. 中国环境监测, 2020, 36(4), 145-153.

[16] 万一夫, 杨瑞琴, 张冠男等. 气相色谱-三重四极杆质谱法快速检验爆炸案件中苦味酸[J]. 分析测试学报, 2022, 41(12), 1808-1814.

[17] 顾云. 液相色谱法检测水质中的苦味酸[J]. 绿色科技, 2021, 23(20), 110-115.

[18] Dighole R. P., Munde A. V., Mulik B. B., et al. Multiwalled carbon nanotubes decorated with molybdenum sulphide (MoS2@MWCNTs) for highly selective electrochemical picric acid (PA) determination[J]. Applied Surface Science, 2024, 659: 159856.

[19] James S., Chishti B., Ansari S. A., et al. Nanostructured cuprous-oxide-based screen-printed electrode for electrochemical sensing of picric acid[J]. Journal of Electronic Materials, 2018, 47(12): 7505-7513.

[20] Wang K., Guo C., Geng T. M. The construction of the flexible covalent organic frameworks with phenyl sulfide as linkers used for adsorping iodine and fluorescence sensing picric acid[J]. Reactive and Functional Polymers, 2024, 197: 105863.

[21] Ahmed H. M., Ghali M., Zahra W., et al. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 260: 119967.

[22] Wang K., Geng T. M., Zhu H., et al. The preparation of the flexible aniline-based covalent organic frameworks used for uptaking iodine and sensing picric acid and iodine[J]. Microporous and Mesoporous Materials, 2024, 363: 112794.

[23] 雷勇,张军,刘晓,等.金属有机骨架对阴离子染料的超高吸附性能[J].固体化学学报,2020,316, 123563.

[24] Liu Lu, Chen Xiaoli, Shang Lu, et al.Eu3+-postdoped MOFs are used for fluorescence sensing of TNP,TC and pesticides and for anti-counterfeiting ink application[J]. Dyes and Pigments, 2022,202:110253.

[25] Liu Wen, Cui Huali, Zhou Jie, et al. Synthesis of a Cd-MOF Fluorescence Sensor and Its Detection of Fe3+, Fluazinam, TNP, and Sulfasalazine Enteric-Coated Tablets in Aqueous Solution[J]. ACS Omega,2023,8(27): 24635 -24643.

[26] Li P, Li Z, Liu S, et al. Imidazole/pyridine-based ionic liquids modified metal-organic frameworks for efficient adsorption of Congo red in water[J]. Journal of Molecular Structure, 2024, 1303: 137599.

[27] 王丽珊, 郭华东. 新型锰基金属有机骨架材料的合成及其光催化降解四环素的性能[J]. 吉林大学学报(理学版): 1-8.

[28] Yang Xiaoshuai, Wang Luliang, Zhao Jie, et al. Construction of fluorescent copper nanoclusters for selective sensing Fe3+ in food samples based on absorption competition quenching mechanism [J]. Journal of Food Measurement and Characterization,2023,17:2850-2857.

[29] Li H., Wang X., Zhang X., et al. Eu-MOF nanorods functionalized with large heterocyclic ionic liquid for photoelectrochemical immunoassay of α-fetoprotein[J]. Analytica Chimica Acta, 2022, 1195: 339459.

[30] Srinivasan P., Samanta S., Krishnakumar A., et al. Insights into g-C3N4 as a chemi-resistive gas sensor for VOCs and humidity–a review of the state of the art and recent advancements[J]. Journal of Materials Chemistry A, 2021, 9(17): 10612-10651.

[31] Yang G., Jiang X., Xu H., et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327.

引用本文

毛欣怡, 李盼盼, 陈俏霞, 吕依诺, 刘昕语, 辛雪莲, 基于咪唑功能化Ba(II)-MOF材料荧光检测氟啶胺和苦味酸的研究[J]. 化学与化工研究, 2024; 4: (1) : 12-22.