参考文献 References
[1] Adesina Adegoke K., Samuel Agboola O., Ogunmodede J., et al. Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater[J]. Materials Chemistry and Physics, 2020, 253: 123246.
[2] Tchinsa A., Hossain M. F., Wang T., et al. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review[J]. Chemosphere, 2021, 284: 131393.
[3] Tang X., Tang R., Xiong S., et al. Application of natural minerals in photocatalytic degradation of organic pollutants: A review[J]. Science of The Total Environment, 2022, 812: 152434.
[4] 李如美,王英华,李瑞娟,等.氟啶胺在马铃薯和土壤中的残留及安全使用评价[J].现代农药,2022,21(01):57-60.
[5] 骆爱兰,余向阳.氟啶胺胁迫对土壤过氧化氢酶活性的影响[J].江苏农业科学学,2011,39(06),478-480.
[6] 陈莲芬,陈梦涵,康健.金属-有机框架材料在有机磷农药检测和吸附中的应用进展[J].肇庆学院学报,2023,44(05), 20-28.
[7] Li Nan, Xia Yining, Li Yun, et al. Untargeted screening, quantitative analysis, and toxicity estimation of degradation products of fluazinam in vegetables[J]. Microchemical Journal,2023,190:108584.
[8] Chen Lei, Shangguan Liangmin, Wu Yongning, et al. Study on the residue and degradation of fluorine-containing pesticides in Oolong tea by using gas chromatography-mass spectrometry[J]. Food Control,2012,25(2):433-440.
[9] 陈丽惠,张斌,贾沁一,等.分散固相萃取-液相色谱-串联质谱法测定茶叶中12种农药的含量[J].理化检验-化学分册,2023,59(10),1196-1201
[10] Kumar S. M., Iyer S. K. An AIE active imidazole conjugated α-cyanostilbene based sensor for the selective and sensitive detection of picric acid in an aqueous medium[J]. Sensors and Actuators Reports, 2023, 6: 100177.
[11] Feng Y., Liu J., Lv M., et al. Unraveling the significant role of inter-HBs blocking the dark state in the “OFF/ON” sensing mechanism of fluorescent probe detecting picric acid[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 445: 115035.
[12] P K., Cherian A. R., Sirimahachai U., et al. Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107209.
[13] Gowri A., Vignesh R., Kathiravan A. Anthracene based AIEgen for picric acid detection in real water samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117144.
[14] 刘喜珍. 超高效液相色谱-串联质谱法快速测定水中农药和苦味酸[J]. 广州化工, 2022, 50(11): 97-99.
[15] 杨静. 高效液相色谱-串联三重四级杆质谱法测定土壤中苦味酸和联苯胺[J]. 中国环境监测, 2020, 36(4), 145-153.
[16] 万一夫, 杨瑞琴, 张冠男等. 气相色谱-三重四极杆质谱法快速检验爆炸案件中苦味酸[J]. 分析测试学报, 2022, 41(12), 1808-1814.
[17] 顾云. 液相色谱法检测水质中的苦味酸[J]. 绿色科技, 2021, 23(20), 110-115.
[18] Dighole R. P., Munde A. V., Mulik B. B., et al. Multiwalled carbon nanotubes decorated with molybdenum sulphide (MoS2@MWCNTs) for highly selective electrochemical picric acid (PA) determination[J]. Applied Surface Science, 2024, 659: 159856.
[19] James S., Chishti B., Ansari S. A., et al. Nanostructured cuprous-oxide-based screen-printed electrode for electrochemical sensing of picric acid[J]. Journal of Electronic Materials, 2018, 47(12): 7505-7513.
[20] Wang K., Guo C., Geng T. M. The construction of the flexible covalent organic frameworks with phenyl sulfide as linkers used for adsorping iodine and fluorescence sensing picric acid[J]. Reactive and Functional Polymers, 2024, 197: 105863.
[21] Ahmed H. M., Ghali M., Zahra W., et al. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 260: 119967.
[22] Wang K., Geng T. M., Zhu H., et al. The preparation of the flexible aniline-based covalent organic frameworks used for uptaking iodine and sensing picric acid and iodine[J]. Microporous and Mesoporous Materials, 2024, 363: 112794.
[23] 雷勇,张军,刘晓,等.金属有机骨架对阴离子染料的超高吸附性能[J].固体化学学报,2020,316, 123563.
[24] Liu Lu, Chen Xiaoli, Shang Lu, et al.Eu3+-postdoped MOFs are used for fluorescence sensing of TNP,TC and pesticides and for anti-counterfeiting ink application[J]. Dyes and Pigments, 2022,202:110253.
[25] Liu Wen, Cui Huali, Zhou Jie, et al. Synthesis of a Cd-MOF Fluorescence Sensor and Its Detection of Fe3+, Fluazinam, TNP, and Sulfasalazine Enteric-Coated Tablets in Aqueous Solution[J]. ACS Omega,2023,8(27): 24635 -24643.
[26] Li P, Li Z, Liu S, et al. Imidazole/pyridine-based ionic liquids modified metal-organic frameworks for efficient adsorption of Congo red in water[J]. Journal of Molecular Structure, 2024, 1303: 137599.
[27] 王丽珊, 郭华东. 新型锰基金属有机骨架材料的合成及其光催化降解四环素的性能[J]. 吉林大学学报(理学版): 1-8.
[28] Yang Xiaoshuai, Wang Luliang, Zhao Jie, et al. Construction of fluorescent copper nanoclusters for selective sensing Fe3+ in food samples based on absorption competition quenching mechanism [J]. Journal of Food Measurement and Characterization,2023,17:2850-2857.
[29] Li H., Wang X., Zhang X., et al. Eu-MOF nanorods functionalized with large heterocyclic ionic liquid for photoelectrochemical immunoassay of α-fetoprotein[J]. Analytica Chimica Acta, 2022, 1195: 339459.
[30] Srinivasan P., Samanta S., Krishnakumar A., et al. Insights into g-C3N4 as a chemi-resistive gas sensor for VOCs and humidity–a review of the state of the art and recent advancements[J]. Journal of Materials Chemistry A, 2021, 9(17): 10612-10651.
[31] Yang G., Jiang X., Xu H., et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327.