期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Chemistry and Chemical Research. 2025; 5: (1) ; 116-118 ; DOI: 10.12208/j.jccr.20250035.

Research on artificial intelligence-based drug molecule design and screening strategies
基于人工智能的药物分子设计与筛选策略研究

作者: 王野 *

辽宁成大生物股份有限公司 辽宁沈阳

*通讯作者: 王野,单位:辽宁成大生物股份有限公司 辽宁沈阳;

发布时间: 2025-06-30 总浏览量: 39

摘要

人工智能(AI)在药物分子设计与筛选领域的应用日益成为提升药物研发效率的关键技术。通过深度学习、机器学习等AI技术,研究人员能够在海量分子数据中快速识别潜在的药物分子,从而大大缩短研发周期,降低成本,提高命中率。本文探讨了基于人工智能的药物分子设计与筛选策略,分析了AI在药物分子筛选中的优势与挑战,探讨了如何通过建立有效的计算模型来优化分子设计,提升药物研发的精确度。本文还重点讨论了AI算法与传统药物筛选方法的结合应用,以及在药物发现中可能遇到的技术难题。综上所述,人工智能的引入不仅优化了药物分子的设计过程,还为药物筛选和精准医学的发展提供了新的动力。

关键词: 人工智能;药物分子设计;分子筛选;深度学习;机器学习

Abstract

The application of artificial intelligence (AI) in the field of drug molecule design and screening has increasingly become a key technology to improve the efficiency of drug research and development. By leveraging AI technologies such as deep learning and machine learning, researchers can quickly identify potential drug molecules from massive molecular datasets, thereby significantly shortening the research and development cycle, reducing costs, and improving hit rates. This paper explores AI-based strategies for drug molecule design and screening, analyzes the advantages and challenges of AI in drug molecule screening, and discusses how to optimize molecular design and enhance the accuracy of drug research and development by establishing effective computational models. It also focuses on the combined application of AI algorithms with traditional drug screening methods, as well as the potential technical difficulties encountered in drug discovery. In summary, the integration of artificial intelligence not only optimizes the design process of drug molecules but also provides new impetus for the development of drug screening and precision medicine.

Key words: Artificial intelligence; Drug molecule design; Molecular screening; Deep learning; Machine learning

参考文献 References

[1] 谭相端,张妞妞,马小盼,等.人工智能背景下研究生药物分子设计课程“五维一体”教学改革探索[J].科教文汇, 2025, (12):118-123.

[2] 叶子.基于改进图同构网络的药物-靶点亲和力预测研究与应用[D].武汉工程大学,2024.

[3] 曹溢.基于分子SMILES预训练模型的药物治疗属性预测研究[D].四川大学,2024.

[4] 邓增乾.基于多源特征图表示学习的药物相互作用预测研究[D].青岛理工大学,2024.

[5] 高蒙蒙.基于深度学习的新冠药物-靶标相互作用预测算法研究[D].东南大学,2023.

[6] 李诗萌.基于图神经网络的类药小分子毒性预测与从头设计研究[D].辽宁大学,2023.

[7] 殷佳依.药物转运体和代谢酶数据体系构建及药物响应机制研究[D].浙江大学,2023.

[8] 孙建博,李娜,陈莉.人工智能发现活性分子背景下天然药物化学教学的转型与发展[J].化学教育(中英文),2022, 43(24):79-84.

引用本文

王野, 基于人工智能的药物分子设计与筛选策略研究[J]. 化学与化工研究, 2025; 5: (1) : 116-118.